

5

7

6

8

9

10

USE THE TOTAL ERROR?

- We could just take the error between the mean and the data and add them.

Score	Mean	Deviation
1	2.6	-1.6
2	2.6	-0.6
3	2.6	0.4
3	2.6	0.4
4	2.6	1.4
	Total $=$	0

11

- We could add the deviations to find out the total error.
- Deviations cancel out because some are positive and others negative.
Therefore, we square each deviation.
- If we add these squared deviations we get the Sum of Squared Errors (SS).

SUM OF SQUARED ERRORS

13

14

15

THE NORMAL PROBABILITY
DISTRIBUTION

16

17

18

19

20

21

23

22

24

25

26

27

- There are several effect size measures that can be used:
- Cohen's d
- Pearson's r
- Odds Ratio/Risk rates
- Pearson's r is a good intuitive measure
- Oh, apart from when group sizes are different ...

EFFECT SIZE MEASURES

28

29

30
$>r=.1, d=.2$ (small effect):
$>$ the effect explains 1% of the total variance.
$>r=.3, d=.5$ (medium effect):
$>$ the effect accounts for 9% of the total variance.
$>r=.5, d=.8$ (large effect):
> the effect accounts for 25% of the variance.

- Beware of these 'canned' effect sizes though:
- The size of effect should be placed within the research context.

EFFECT SIZE MEASURES

31
$-\mathrm{OR}=\frac{\operatorname{Odds}(A)}{\operatorname{Odds}(B)}$

- OR = 1 = Same
$>O R>1=$ Positive
- $O R<1=$ Negative
- Log Odds = LN(OR)
- Conversion
- OR = exp(Log Odds)

ODDS RATIOS

